Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nutrients ; 16(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276547

RESUMO

H2S, a gasotransmitter that can be produced both via the transsulfuration pathway and non-enzymatically, plays a key role in vasodilation and angiogenesis during pregnancy. In fact, the involvement of H2S production on plasma levels of sFLT1, PGF, and other molecules related to preeclampsia has been demonstrated. Interestingly, we have found that maternal fructose intake (a common component of the Western diet) affects tissular H2S production. However, its consumption is allowed during pregnancy. Thus, (1) to study whether maternal fructose intake affects placental production of H2S in the offspring, when pregnant; and (2) to study if fructose consumption during pregnancy can increase the risk of preeclampsia, pregnant rats from fructose-fed mothers (10% w/v) subjected (FF) or not (FC) to a fructose supplementation were studied and compared to pregnant control rats (CC). Placental gene expression, H2S production, plasma sFLT1, and PGF were determined. Descendants of fructose-fed mothers (FC) presented an increase in H2S production. However, if they consumed fructose during their own gestation (FF), this effect was reversed so that the increase disappeared. Curiously, placental synthesis of H2S was mainly non-enzymatic. Related to this, placental expression of Cys dioxygenase, an enzyme involved in Cys catabolism (a molecule required for non-enzymatic H2S synthesis), was significantly decreased in FC rats. Related to preeclampsia, gene expression of sFLT1 (a molecule with antiangiogenic properties) was augmented in both FF and FC dams, although these differences were not reflected in their plasma levels. Furthermore, placental expression of PGF (a molecule with angiogenic properties) was decreased in both FC and FF dams, becoming significantly diminished in plasma of FC versus control dams. Both fructose consumption and maternal fructose intake induce changes in molecules that contribute to increasing the risk of preeclampsia, and these effects are not always mediated by changes in H2S production.


Assuntos
Placenta , Pré-Eclâmpsia , Humanos , Gravidez , Ratos , Feminino , Animais , Placenta/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/farmacologia , Pré-Eclâmpsia/metabolismo , Frutose/metabolismo
2.
J Funct Foods ; 100: 105366, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36506002

RESUMO

Fructose-rich beverages and foods consumption correlates with the epidemic rise in cardiovascular disease, diabetes and obesity. Severity of COVID-19 has been related to these metabolic diseases. Fructose-rich foods could place people at an increased risk for severe COVID-19. We investigated whether maternal fructose intake in offspring affects hepatic and ileal gene expression of proteins that permit SARS-CoV2 entry to the cell. Carbohydrates were supplied to pregnant rats in drinking water. Adult and young male descendants subjected to water, liquid fructose alone or as a part of a Western diet, were studied. Maternal fructose reduced hepatic SARS-CoV2 entry factors expression in older offspring. On the contrary, maternal fructose boosted the Western diet-induced increase in viral entry factors expression in ileum of young descendants. Maternal fructose intake produced a fetal programming that increases hepatic viral protection and, in contrast, exacerbates fructose plus cholesterol-induced diminution in SARS-CoV2 protection in small intestine of progeny.

3.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36613916

RESUMO

We previously demonstrated that treatment with BemA (bempedoic acid), an inhibitor of ATP citrate lyase, significantly reduces fatty liver in a model of liver steatosis (HFHFr-female Sprague-Dawley rat fed a high-fat high-fructose diet). Since the hepatic production of the gasotransmitter H2S is impaired in liver disorders, we were interested in determining if the production of H2S was altered in our HFHFr model and whether the administration of BemA reversed these changes. We used stored liver samples from a previous study to determine the total and enzymatic H2S production, as well as the expression of CBS (cystathionine ß-synthase), CSE (cystathionine γ-lyase), and 3MST (3-mercaptopiruvate sulfurtransferase), and the expression/activity of FXR (farnesoid X receptor), a transcription factor involved in regulating CSE expression. Our data show that the HFHFr diet reduces the total and enzymatic production of liver H2S, mainly by decreasing the expression of CBS and CSE. Furthermore, BemA treatment restored H2S production, increasing the expression of CBS and CSE, providing evidence for the involvement of FXR transcriptional activity and the mTORC1 (mammalian target of rapamycin1)/S6K1 (ribosomal protein S6 kinase beta-1)/PGC1α (peroxisome proliferator receptor gamma coactivator1α) pathway.


Assuntos
Sulfeto de Hidrogênio , Hepatopatia Gordurosa não Alcoólica , Animais , Feminino , Ratos , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Dieta Hiperlipídica/efeitos adversos , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ratos Sprague-Dawley
4.
Nutrients ; 13(10)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34684668

RESUMO

The role of fructose in the global obesity and metabolic syndrome epidemic is widely recognized. However, its consumption is allowed during pregnancy. We have previously demonstrated that maternal fructose intake in rats induces detrimental effects in fetuses. However, these effects only appeared in adult descendants after a re-exposure to fructose. Pregnancy is a physiological state that leads to profound changes in metabolism and hormone response. Therefore, we wanted to establish if pregnancy in the progeny of fructose-fed mothers was also able to provoke an unhealthy situation. Pregnant rats from fructose-fed mothers (10% w/v) subjected (FF) or not (FC) to a fructose supplementation were studied and compared to pregnant control rats (CC). An OGTT was performed on the 20th day of gestation, and they were sacrificed on the 21st day. Plasma and tissues from mothers and fetuses were analyzed. Although FF mothers showed higher AUC insulin values after OGTT in comparison to FC and CC rats, ISI was lower and leptinemia was higher in FC and FF rats than in the CC group. Accordingly, lipid accretion was observed both in liver and placenta in the FC and FF groups. Interestingly, fetuses from FC and FF mothers also showed the same profile observed in their mothers on lipid accumulation, leptinemia, and ISI. Moreover, hepatic lipid peroxidation was even more augmented in fetuses from FC dams than those of FF mothers. Maternal fructose intake produces in female progeny changes that alter their own pregnancy, leading to deleterious effects in their fetuses.


Assuntos
Comportamento Alimentar , Feto/patologia , Frutose/efeitos adversos , Animais , Peso Corporal , Feminino , Regulação da Expressão Gênica , Insulina/metabolismo , Leptina/metabolismo , Lipídeos/análise , Fígado/metabolismo , Estresse Oxidativo , Placenta/metabolismo , Gravidez , Ratos Sprague-Dawley
5.
Clín. investig. arterioscler. (Ed. impr.) ; 33(3): 127-137, May-Jun. 2021. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-220987

RESUMO

Introduction: Fructose, alone or in combination with glucose, has been used as a source of added sugars to manufacture sugary drinks and processed foods. High consumption of simple sugars, mainly fructose, has been demonstrated to be one of the causes of developing metabolic diseases. Maternal nutrition is a key factor in the health of the progeny when adult. However, ingestion of fructose-containing foods is still permitted during gestation. Hydrogen sulphide (H2S) is a gasotransmitter produced in the transsulfuration pathway with proved beneficial effects to combat metabolic diseases. Methods: Carbohydrates were supplied to pregnant rats in drinking water (10% wt/vol) throughout gestation, and the pregnant rats, their foetuses, and adult male descendants were studied. Later, adult male progeny from control, fructose- and glucose-fed mothers were subjected to liquid fructose, and were compared to the control group. Liver H2S production was determined. Results: This study shows that, in pregnancy, either a fructose-rich diet per se or situations that produce an impaired insulin sensitivity such as an excessive intake of glucose, decrease hepatic and placental production of H2S. Furthermore, this effect was also observed in the liver of male offspring (both in foetal and adult stages). Interestingly, when these adult descendants were subjected to a high fructose intake, decreases in H2S synthesis in liver and adipose tissue due to this fructose intake were maternal consumption dependent. Conclusions: Given H2S is a protective agent against diseases such as diabetes, obesity, cardiovascular diseases, and metabolic syndrome, the fact that carbohydrate consumption reduces H2S synthesis both in pregnancy and in their progeny could have clear and relevant clinical implications.(AU)


Introducción: La fructosa, sola o en combinación con glucosa, se usa como fuente de azúcares añadidos para elaborar bebidas azucaradas y comidas procesadas. El elevado consumo de azúcares simples, sobre todo fructosa, se ha mostrado como una de las causas del desarrollo de enfermedades metabólicas. La nutrición materna es un factor clave en la salud de la descendencia adulta. Sin embargo, el consumo de alimentos que contienen fructosa está todavía permitido durante la gestación. El sulfuro de hidrógeno (H2S) es un gasotransmisor producido en la ruta de la transulfuración con probados beneficios para luchar contra las enfermedades metabólicas. Métodos: Los carbohidratos se suministraron a las ratas gestantes en el agua de bebida (10% p/v) a lo largo de la gestación, y se estudiaron las ratas preñadas, sus fetos y los descendientes macho adultos. Posteriormente, a la progenie macho adulta procedente de madres control, alimentadas con fructosa o bien con glucosa, se le administró fructosa líquida y se comparó con un grupo control. Se determinó la producción hepática de H2S. Resultados: Este estudio muestra cómo en la gestación, una dieta rica en fructosa per se o situaciones en las que se produce una empeorada sensibilidad a la insulina tal como un consumo excesivo de glucosa, disminuyen la producción hepática y placentaria de H2S. Más aún, este efecto también fue observado en el hígado de la descendencia macho (tanto en el estado fetal como en la edad adulta). Es destacable que, cuando esta descendencia adulta era sometida a una ingesta elevada de fructosa, las disminuciones en la síntesis de H2S en el hígado y el tejido adiposo debidas a dicho consumo eran dependientes del consumo materno...(AU)


Assuntos
Humanos , Animais , Ratos , Carboidratos , Açúcares , Nutrição Materna , Frutose , Glucose , Doenças Metabólicas , Desenvolvimento Fetal
6.
Clin Investig Arterioscler ; 33(3): 127-137, 2021.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-33309332

RESUMO

INTRODUCTION: Fructose, alone or in combination with glucose, has been used as a source of added sugars to manufacture sugary drinks and processed foods. High consumption of simple sugars, mainly fructose, has been demonstrated to be one of the causes of developing metabolic diseases. Maternal nutrition is a key factor in the health of the progeny when adult. However, ingestion of fructose-containing foods is still permitted during gestation. Hydrogen sulphide (H2S) is a gasotransmitter produced in the transsulfuration pathway with proved beneficial effects to combat metabolic diseases. METHODS: Carbohydrates were supplied to pregnant rats in drinking water (10% wt/vol) throughout gestation, and the pregnant rats, their foetuses, and adult male descendants were studied. Later, adult male progeny from control, fructose- and glucose-fed mothers were subjected to liquid fructose, and were compared to the control group. Liver H2S production was determined. RESULTS: This study shows that, in pregnancy, either a fructose-rich diet per se or situations that produce an impaired insulin sensitivity such as an excessive intake of glucose, decrease hepatic and placental production of H2S. Furthermore, this effect was also observed in the liver of male offspring (both in foetal and adult stages). Interestingly, when these adult descendants were subjected to a high fructose intake, decreases in H2S synthesis in liver and adipose tissue due to this fructose intake were maternal consumption dependent. CONCLUSIONS: Given H2S is a protective agent against diseases such as diabetes, obesity, cardiovascular diseases, and metabolic syndrome, the fact that carbohydrate consumption reduces H2S synthesis both in pregnancy and in their progeny could have clear and relevant clinical implications.


Assuntos
Carboidratos da Dieta , Frutose , Placenta , Animais , Feminino , Glucose , Humanos , Fígado , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Gravidez , Ratos , Ratos Sprague-Dawley
7.
Mol Nutr Food Res ; 64(18): e2000628, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32754997

RESUMO

SCOPE: Fructose intake from added sugars correlates with the epidemic rise in metabolic syndrome and cardiovascular diseases (CVD). However, consumption of beverages containing fructose is allowed during gestation. Homocysteine (Hcy) is a well-known risk factor for CVD while hydrogen sulfide (H2 S), a product of its metabolism, has been proved to exert opposite effects to Hcy. METHODS AND RESULTS: First, it is investigated whether maternal fructose intake produces subsequent changes in Hcy metabolism and H2 S synthesis of the progeny. Carbohydrates are supplied to pregnant rats in drinking water (10% wt/vol) throughout gestation. Adult female descendants from fructose-fed, control or glucose-fed mothers are studied. Females from fructose-fed mothers have elevated homocysteinemia, hepatic H2 S production, cystathionine γ-lyase (CSE) (the key enzyme in H2 S synthesis) expression and plasma H2 S, versus the other two groups. Second, it is studied how adult female progeny from control (C/F), fructose- (F/F), and glucose-fed (G/F) mothers responded to liquid fructose and compared them to the control group (C/C). Interestingly, hepatic CSE expression and H2 S synthesis are diminished by fructose intake, this effect being more pronounced in F/F females. CONCLUSION: Maternal fructose intake produces a fetal programming that increases hepatic H2 S production and, in contrast, exacerbates its fructose-induced drop in female progeny.


Assuntos
Frutose/efeitos adversos , Sulfeto de Hidrogênio/metabolismo , Fígado/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Animais , Cistationina gama-Liase/metabolismo , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Glucose/farmacologia , Hiper-Homocisteinemia/etiologia , Fígado/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos Sprague-Dawley
8.
Nutrients ; 11(8)2019 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-31426466

RESUMO

Endoplasmic reticulum (ER) homeostasis is crucial to appropriate cell functioning, and when disturbed, a safeguard system called unfolded protein response (UPR) is activated. Fructose consumption modifies ER homeostasis and has been related to metabolic syndrome. However, fructose sweetened beverages intake is allowed during gestation. Therefore, we investigate whether maternal fructose intake affects the ER status and induces UPR. Thus, administrating liquid fructose (10% w/v) to pregnant rats partially activated the ER-stress in maternal and fetal liver and placenta. In fact, a fructose-induced increase in the levels of pIRE1 (phosphorylated inositol requiring enzyme-1) and its downstream effector, X-box binding protein-1 spliced form (XBP1s), was observed. XBP1s is a key transcription factor, however, XBP1s nuclear translocation and the expression of its target genes were reduced in the liver of the carbohydrate-fed mothers, and specifically diminished in the fetal liver and placenta in the fructose-fed mothers. These XBP1s target genes belong to the ER-associated protein degradation (ERAD) system, used to buffer ER-stress and to restore ER-homeostasis. It is known that XBP1s needs to form a complex with diverse proteins to migrate into the nucleus. Since methylglyoxal (MGO) content, a precursor of advanced glycation endproducts (AGE), was augmented in the three tissues in the fructose-fed mothers and has been related to interfere with the functioning of many proteins, the role of MGO in XBP1s migration should not be discarded. In conclusion, maternal fructose intake produces ER-stress, but without XBP1s nuclear migration. Therefore, a complete activation of UPR that would resolve ER-stress is lacking. A state of fructose-induced oxidative stress is probably involved.


Assuntos
Dieta , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Frutose/efeitos adversos , Fenômenos Fisiológicos da Nutrição Materna , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Proteína 1 de Ligação a X-Box/metabolismo , Animais , Transporte Biológico , Núcleo Celular , Açúcares da Dieta/efeitos adversos , Endorribonucleases/metabolismo , Feminino , Feto/efeitos dos fármacos , Fígado/efeitos dos fármacos , Placenta/efeitos dos fármacos , Gravidez , Proteínas Serina-Treonina Quinases/metabolismo , Aldeído Pirúvico/metabolismo , Ratos Sprague-Dawley
9.
J Nutr Biochem ; 61: 163-172, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30236873

RESUMO

Fructose consumption from added sugars correlates with the epidemic rise in obesity, metabolic syndrome and cardiovascular diseases. However, consumption of beverages containing fructose is allowed during gestation. We have investigated whether maternal fructose intake produces subsequent changes in cholesterol metabolism of progeny. Carbohydrates were supplied to pregnant rats in drinking water (10% w/v solution) throughout gestation. Adult male and female descendants from fructose-fed, control or glucose-fed mothers were studied. Male offspring from fructose-fed mothers had elevated plasma HDL-cholesterol levels, whereas female progeny from fructose-fed mothers presented lower levels of non-HDL cholesterol vs. the other two groups. Liver X-receptor (LXR), an important regulator of cholesterol metabolism, and its target genes such as scavenger receptor B1, ATP-binding cassette (ABC)G5 and cholesterol 7-alpha hydroxylase showed decreased gene expression in males from fructose-fed mothers and the opposite in the female progeny. Moreover, the expression of a number of LXRα target genes related to lipogenesis paralleled to that for LXRα expression. In accordance with this, LXRα gene promoter methylation was increased in males from fructose-fed mothers and decreased in the corresponding group of females. Surprisingly, plasma folic acid levels, an important methyl-group donor, were augmented in males from fructose-fed mothers and diminished in female offspring. Maternal fructose intake produces a fetal programming that influences, in a gender-dependent manner, the transcription factor LXRα epigenetically, and both hepatic mRNA gene expression and plasma parameters of cholesterol metabolism in adult progeny. Changes in the LXRα promoter methylation might be related to the availability of the methyl donor folate.


Assuntos
Colesterol/metabolismo , Frutose/farmacologia , Receptores X do Fígado/genética , Fenômenos Fisiológicos da Nutrição Materna , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Metilação de DNA/efeitos dos fármacos , Feminino , Ácido Fólico/sangue , Lipoproteínas/genética , Receptores X do Fígado/metabolismo , Masculino , Gravidez , Ratos Sprague-Dawley , Fatores Sexuais
10.
Mol Nutr Food Res ; 60(12): 2700-2711, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27545118

RESUMO

SCOPE: One of the features of metabolic syndrome caused by liquid fructose intake is an impairment of redox status. We have investigated whether maternal fructose ingestion modifies the redox status in pregnant rats and their fetuses. METHODS AND RESULTS: Fructose (10% wt/vol) in the drinking water of rats throughout gestation, leads to maternal hepatic oxidative stress. However, this change was also observed in glucose-fed rats and, in fact, both carbohydrates produced a decrease in antioxidant enzyme activity. Surprisingly, mothers fed carbohydrates displayed low plasma lipid oxidation. In contrast, fetuses from fructose-fed mothers showed elevated levels of plasma lipoperoxides versus fetuses from control or glucose-fed mothers. Interestingly, a clearly augmented oxidative stress was observed in placenta of fructose-fed mothers, accompanied by a lower expression of the transcription factor Nuclear factor-erythroid 2-related factor-2 (Nrf2) and its target gene, heme oxygenase-1 (HO-1), a potent antioxidant molecule. Moreover, histone deacetylase 3 (HDAC3) that has been proposed to upregulate HO-1 expression by stabilizing Nrf2, exhibited a diminished expression in placenta of fructose-supplemented mothers. CONCLUSIONS: Maternal fructose intake provoked an imbalanced redox status in placenta and a clear diminution of HO-1 expression, which could be responsible for the augmented oxidative stress found in their fetuses.


Assuntos
Frutose/efeitos adversos , Heme Oxigenase (Desciclizante)/metabolismo , Exposição Materna/efeitos adversos , Estresse Oxidativo , Placenta/efeitos dos fármacos , Animais , Feminino , Feto/efeitos dos fármacos , Feto/metabolismo , Frutose/administração & dosagem , Heme Oxigenase (Desciclizante)/genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução/efeitos dos fármacos , Placenta/diagnóstico por imagem , Placenta/metabolismo , Gravidez , Ratos , Ratos Sprague-Dawley , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
11.
Biochem J ; 473(14): 2187-203, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27208167

RESUMO

Obesity affects the functional capability of adipose-derived stem cells (ASCs) and their effective use in regenerative medicine through mechanisms that are still poorly understood. In the present study we used a multiplatform [LC/MS, GC/MS and capillary electrophoresis/MS (CE/MS)], metabolomics, untargeted approach to investigate the metabolic alteration underlying the inequalities observed in obesity-derived ASCs. The metabolic fingerprint (metabolites within the cells) and footprint (metabolites secreted in the culture medium), from obesity- and non-obesity-derived ASCs of humans or mice, were characterized to provide valuable information. Metabolites associated with glycolysis, the tricarboxylic acid cycle, the pentose phosphate pathway and the polyol pathway were increased in the footprint of obesity-derived human ASCs, indicating alterations in carbohydrate metabolism, whereas, from the murine model, deep differences in lipid and amino acid catabolism were highlighted. Therefore, new insights on the ASCs' metabolome were provided that enhance our understanding of the processes underlying ASCs' stemness capacity and its relationship with obesity, in different cell models.


Assuntos
Tecido Adiposo/citologia , Metabolômica/métodos , Obesidade/metabolismo , Células-Tronco/citologia , Animais , Células Cultivadas , Cromatografia Líquida , Ciclo do Ácido Cítrico/fisiologia , Cromatografia Gasosa-Espectrometria de Massas , Glicólise/fisiologia , Humanos , Camundongos , Células-Tronco/metabolismo
12.
J Nutr Biochem ; 32: 115-22, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27142744

RESUMO

Fructose intake from added sugars correlates with the epidemic rise in metabolic syndrome and related events. Nevertheless, consumption of beverages sweetened with fructose is not regulated in gestation. Previously, we found that maternal fructose intake produces in the progeny, when fetuses, impaired leptin signaling and hepatic steatosis and then impaired insulin signaling and hypoadiponectinemia in adult male rats. Interestingly, adult females from fructose-fed mothers did not exhibit any of these disturbances. However, we think that, actually, these animals keep a programmed phenotype hidden. Fed 240-day-old female progeny from control, fructose- and glucose-fed mothers were subjected for 3weeks to a fructose supplementation period (10% wt/vol in drinking water). Fructose intake provoked elevations in insulinemia and adiponectinemia in the female progeny independently of their maternal diet. In accordance, the hepatic mRNA levels of several insulin-responsive genes were similarly affected in the progeny after fructose intake. Interestingly, adult progeny of fructose-fed mothers displayed, in response to the fructose feeding, augmented plasma triglyceride and NEFA levels and hepatic steatosis versus the other two groups. In agreement, the expression and activity for carbohydrate response element binding protein (ChREBP), a lipogenic transcription factor, were higher after the fructose period in female descendants from fructose-fed mothers than in the other groups. Furthermore, liver fructokinase expression that has been indicated as one of those responsible for the deleterious effects of fructose ingestion was preferentially augmented in that group. Maternal fructose intake does influence the adult female offspring's response to liquid fructose and so exacerbates fructose-induced dyslipidemia and hepatic steatosis.


Assuntos
Bebidas/efeitos adversos , Dislipidemias/etiologia , Desenvolvimento Fetal , Frutose/efeitos adversos , Fenômenos Fisiológicos da Nutrição Materna , Hepatopatia Gordurosa não Alcoólica/etiologia , Adoçantes Calóricos/efeitos adversos , Adiponectina/agonistas , Adiponectina/sangue , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/agonistas , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Dislipidemias/sangue , Dislipidemias/metabolismo , Dislipidemias/fisiopatologia , Ácidos Graxos não Esterificados/agonistas , Ácidos Graxos não Esterificados/sangue , Feminino , Frutoquinases/química , Frutoquinases/genética , Frutoquinases/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glucose/efeitos adversos , Hiperinsulinismo/sangue , Hiperinsulinismo/etiologia , Hiperinsulinismo/metabolismo , Hiperinsulinismo/fisiopatologia , Fígado/enzimologia , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Gravidez , Distribuição Aleatória , Ratos Sprague-Dawley , Triglicerídeos/agonistas , Triglicerídeos/sangue
13.
Eur J Nutr ; 55(2): 665-674, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25808117

RESUMO

PURPOSE: Fructose intake from added sugars correlates with the epidemic rise in metabolic syndrome and cardiovascular diseases. However, consumption of beverages containing fructose is allowed during gestation. Recently, we found that an intake of fructose (10 % wt/vol) throughout gestation produces impaired fetal leptin signaling and hepatic steatosis. Therefore, we have investigated whether fructose intake during pregnancy produces subsequent changes in the progeny, when adult. METHODS: Fed 261-day-old male and female descendants from fructose-fed, control or glucose-fed mothers were used. Plasma was used to analyze glucose, insulin, leptin, and adiponectin. Hepatic expression of proteins related to insulin signaling was determined. RESULTS: Fructose intake throughout pregnancy did not produce alterations in the body weight of the progeny. Adult male progeny of fructose-fed mothers had elevated levels of insulin without a parallel increase in phosphorylation of protein kinase B. However, they displayed an augmented serine phosphorylation of insulin receptor substrate-2, indicating reduced insulin signal transduction. In agreement, adiponectin levels, which have been positively related to insulin sensitivity, were lower in male descendants from fructose-fed mothers than in the other two groups. Furthermore, mRNA levels for insulin-responsive genes were not affected (phosphoenolpyruvate carboxykinase, glucose-6-phosphatase) or they were decreased (sterol response element-binding protein-1c) in the livers of male progeny from fructose-supplemented rats. On the contrary, adult female rats from fructose-fed mothers did not exhibit any of these disturbances. CONCLUSION: Maternal fructose, but not glucose, intake confined to the prenatal stage provokes impaired insulin signal transduction, hyperinsulinemia, and hypoadiponectinemia in adult male, but not female, progeny.


Assuntos
Adiponectina/deficiência , Frutose/efeitos adversos , Hiperinsulinismo/etiologia , Resistência à Insulina , Fenômenos Fisiológicos da Nutrição Materna , Erros Inatos do Metabolismo/etiologia , Adiponectina/sangue , Animais , Animais Recém-Nascidos , Glicemia/metabolismo , Peso Corporal , Fígado Gorduroso/sangue , Fígado Gorduroso/etiologia , Feminino , Feto/efeitos dos fármacos , Feto/metabolismo , Frutose/administração & dosagem , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Hiperinsulinismo/sangue , Insulina/sangue , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Leptina/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Erros Inatos do Metabolismo/sangue , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Fosforilação , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
14.
J Nutr Metab ; 2015: 158091, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25763281

RESUMO

Objective. Fructose intake from added sugars correlates with the epidemic rise in metabolic syndrome and cardiovascular diseases. However, consumption of beverages containing fructose is allowed during gestation. Recently, we found that an intake of fructose (10% wt/vol) throughout gestation produces an impaired fetal leptin signalling. Therefore, we have investigated whether maternal fructose intake produces subsequent changes in their progeny. Methods. Blood samples from fed and 24 h fasted female and male 90-day-old rats born from fructose-fed, glucose-fed, or control mothers were used. Results. After fasting, HOMA-IR and ISI (estimates of insulin sensitivity) were worse in male descendents from fructose-fed mothers in comparison to the other two groups, and these findings were also accompanied by a higher leptinemia. Interestingly, plasma AOPP and uricemia (oxidative stress markers) were augmented in male rats from fructose-fed mothers compared to the animals from control or glucose-fed mothers. In contrast, female rats did not show any differences in leptinemia between the three groups. Further, insulin sensitivity was significantly improved in fasted female rats from carbohydrate-fed mothers. In addition, plasma AOPP levels tended to be diminished in female rats from carbohydrate-fed mothers. Conclusion. Maternal fructose intake induces insulin resistance, hyperleptinemia, and plasma oxidative stress in male, but not female, progeny.

15.
J Nutr Biochem ; 24(10): 1709-16, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23643523

RESUMO

Fructose intake from added sugars correlates with the epidemic rise in obesity, metabolic syndrome and cardiovascular diseases. Fructose intake also causes features of metabolic syndrome in laboratory animals. Therefore, we have investigated whether fructose modifies lipidemia in pregnant rats and produces changes in their fetuses. Thus, fructose administration (10% wt/vol.) in the drinking water of rats throughout gestation leads to maternal hypertriglyceridemia. This change was not observed in glucose-fed rats, although both carbohydrates produced similar changes in liver triglycerides and in the expression of transcription factors and enzymes involved in lipogenesis. After fasting overnight, mothers fed with carbohydrates were found to be hyperleptinemic. However, after a bolus of glucose, leptinemia in fructose-fed mothers showed no response, whereas it increased in parallel in glucose-fed and control mothers. Fetuses from fructose-fed mothers showed hypotriglyceridemia and a higher hepatic triglyceride content than fetuses from control or glucose-fed mothers. A higher expression of genes related to lipogenesis and a lower expression of fatty acid catabolism genes were also found in fetuses from fructose-fed mothers. Moreover, although hyperleptinemic, these fetuses exhibited increased tyrosine phosphorylation of the signal transducer and activator of transcription-3 (STAT-3) protein, without a parallel increase in the serine phosphorylation of STAT-3 nor in the suppressor of cytokine signaling-3 protein levels whose expression is regulated by leptin through STAT-3 activation. Thus, fructose intake during gestation provoked a diminished maternal leptin response to fasting and refeeding and an impairment in the transduction of the leptin signal in the fetuses, which could be responsible for their hepatic steatosis.


Assuntos
Feto/metabolismo , Frutose/administração & dosagem , Leptina/fisiologia , Transdução de Sinais/efeitos dos fármacos , Animais , Glicemia/metabolismo , Jejum , Feminino , Alimentos , Glucose/metabolismo , Hipertrigliceridemia/etiologia , Gravidez , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...